Abstract
Cytoplasmic male sterility (CMS) plays an important role in the application of heterosis in wheat (Triticum aestivum L.). However, the molecular mechanism underlying CMS remains unknown. This study provides a comprehensive morphological and proteomic analysis of the anthers of a P-type CMS wheat line (P) and its maintainer line, Yanshi 9 hao (Y). Cytological observations indicated that the P-type CMS line shows binucleate microspore abortion. In this line, the tapetum degraded early, leading to anther cuticle defects, which could not provide the nutrition needed for microspore development in a timely manner, thus preventing the development of the microspore to the normal binucleate stage. Proteomic analysis revealed novel proteins involved in P-type CMS. Up to 2576 differentially expressed proteins (DEPs) were quantified in all anthers, and these proteins were significantly enriched in oxidative phosphorylation, glycolysis/gluconeogenesis, citrate cycle (TCA cycle), starch and sucrose metabolism, phenylpropanoid biosynthesis, and pyruvate metabolism pathways. These proteins may comprise a network that regulates male sterility in wheat. Based on the function analysis of DEPs involved in the complex network, we concluded that the P-type CMS line may be due to cellular dysfunction caused by disturbed carbohydrate metabolism, inadequate energy supply, and disturbed protein synthesis. These results provide insights into the molecular mechanism underlying male sterility and serve as a valuable resource for researchers in plant biology, in general, and plant sexual reproduction, in particular.
Funder
the National Support Program of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献