Predicting Potential SARS-COV-2 Drugs—In Depth Drug Database Screening Using Deep Neural Network Framework SSnet, Classical Virtual Screening and Docking

Author:

Karki NischalORCID,Verma NirajORCID,Trozzi FrancescoORCID,Tao PengORCID,Kraka ElfiORCID,Zoltowski BrianORCID

Abstract

Severe Acute Respiratory Syndrome Corona Virus 2 has altered life on a global scale. A concerted effort from research labs around the world resulted in the identification of potential pharmaceutical treatments for CoVID-19 using existing drugs, as well as the discovery of multiple vaccines. During an urgent crisis, rapidly identifying potential new treatments requires global and cross-discipline cooperation, together with an enhanced open-access research model to distribute new ideas and leads. Herein, we introduce an application of a deep neural network based drug screening method, validating it using a docking algorithm on approved drugs for drug repurposing efforts, and extending the screen to a large library of 750,000 compounds for de novo drug discovery effort. The results of large library screens are incorporated into an open-access web interface to allow researchers from diverse fields to target molecules of interest. Our combined approach allows for both the identification of existing drugs that may be able to be repurposed and de novo design of ACE2-regulatory compounds. Through these efforts we demonstrate the utility of a new machine learning algorithm for drug discovery, SSnet, that can function as a tool to triage large molecular libraries to identify classes of molecules with possible efficacy.

Funder

National Science Foundation

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference65 articles.

1. Plagues in World History;Aberth,2011

2. Antibiotics and Bacterial Resistance in the 21st Century

3. Viruses, Plagues, and History: Past, Present, and Future;Oldstone,2020

4. Draft Landscape of COVID-19 Candidate Vaccines 30 September 2020,2020

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3