PolSAR Land Cover Classification Based on Roll-Invariant and Selected Hidden Polarimetric Features in the Rotation Domain

Author:

Tao Chensong,Chen Siwei,Li Yongzhen,Xiao Shunping

Abstract

Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR). Target polarimetric response is strongly dependent on its orientation. Backscattering responses of the same target with different orientations to the SAR flight path may be quite different. This target orientation diversity effect hinders PolSAR image understanding and interpretation. Roll-invariant polarimetric features such as entropy, anisotropy, mean alpha angle, and total scattering power are independent of the target orientation and are commonly adopted for PolSAR image classification. On the other aspect, target orientation diversity also contains rich information which may not be sensed by roll-invariant polarimetric features. In this vein, only using the roll-invariant polarimetric features may limit the final classification accuracy. To address this problem, this work uses the recently reported uniform polarimetric matrix rotation theory and a visualization and characterization tool of polarimetric coherence pattern to investigate hidden polarimetric features in the rotation domain along the radar line of sight. Then, a feature selection scheme is established and a set of hidden polarimetric features are selected in the rotation domain. Finally, a classification method is developed using the complementary information between roll-invariant and selected hidden polarimetric features with a support vector machine (SVM)/decision tree (DT) classifier. Comparison experiments are carried out with NASA/JPL AIRSAR and multi-temporal UAVSAR data. For AIRSAR data, the overall classification accuracy of the proposed classification method is 95.37% (with SVM)/96.38% (with DT), while that of the conventional classification method is 93.87% (with SVM)/94.12% (with DT), respectively. Meanwhile, for multi-temporal UAVSAR data, the mean overall classification accuracy of the proposed method is up to 97.47% (with SVM)/99.39% (with DT), which is also higher than the mean accuracy of 89.59% (with SVM)/97.55% (with DT) from the conventional method. The comparison studies clearly demonstrate the efficiency and advantage of the proposed classification methodology. In addition, the proposed classification method achieves better robustness for the multi-temporal PolSAR data. This work also further validates that added benefits can be gained for PolSAR data investigation by mining and utilization of hidden polarimetric information in the rotation domain.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Range Resolution Enhancement for Miniature Dechirped MMW MIMO-SAR;IEEE Transactions on Geoscience and Remote Sensing;2024

2. Unsupervised Semantic Segmentation of PolSAR Images Based on Multiview Similarity;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

3. A 3-D Convolutional Vision Transformer for PolSAR Image Classification and Change Detection;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

4. Quad-Pol SAR Data Reconstruction from Dual-Pol SAR Mode Based on a Multiscale Feature Aggregation Network;Remote Sensing;2023-08-25

5. PolSAR Image Classification Based on Relation Network with SWANet;Remote Sensing;2023-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3