Shallow-Guided Transformer for Semantic Segmentation of Hyperspectral Remote Sensing Imagery

Author:

Chen Yuhan1ORCID,Liu Pengyuan2ORCID,Zhao Jiechen3,Huang Kaijian4,Yan Qingyun1ORCID

Affiliation:

1. School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. Qingdao Innovation and Development Base (Centre), Harbin Engineering University, Qingdao 266000, China

4. School of Electronic Information and Electrical Engineering, Huizhou University, Huizhou 516007, China

Abstract

Convolutional neural networks (CNNs) have achieved great progress in the classification of surface objects with hyperspectral data, but due to the limitations of convolutional operations, CNNs cannot effectively interact with contextual information. Transformer succeeds in solving this problem, and thus has been widely used to classify hyperspectral surface objects in recent years. However, the huge computational load of Transformer poses a challenge in hyperspectral semantic segmentation tasks. In addition, the use of single Transformer discards the local correlation, making it ineffective for remote sensing tasks with small datasets. Therefore, we propose a new Transformer layered architecture that combines Transformer with CNN, adopts a feature dimensionality reduction module and a Transformer-style CNN module to extract shallow features and construct texture constraints, and employs the original Transformer Encoder to extract deep features. Furthermore, we also designed a simple Decoder to process shallow spatial detail information and deep semantic features separately. Experimental results based on three publicly available hyperspectral datasets show that our proposed method has significant advantages compared with other traditional CNN, Transformer-type models.

Funder

Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources of the People’s Republic of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3