Reconstruction of a Monthly 1 km NDVI Time Series Product in China Using Random Forest Methodology

Author:

Sun Mengmeng12,Gong Adu12,Zhao Xiang12ORCID,Liu Naijing12ORCID,Si Longping12,Zhao Siqing12ORCID

Affiliation:

1. State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and Aerospace Information Research Institute of Chinese Academy of Sciences, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

2. Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Abstract

The normalized difference vegetation index (NDVI) is one of the most common metrics used to describe vegetation dynamics. Unfortunately, low-quality pixels resulting from contamination (by features including clouds, snow, aerosols, and mixed factors) have impeded NDVI products’ widespread application. Researchers have thought of several ways to improve NDVI quality when contamination occurs. However, most of these algorithms are based on the noise-negative deviation principle, which aligns low-value NDVI products to an upper line but ignores cases where absolute surface values are low. Consequently, to fill in these research gaps, in this article, we use the random forest model to produce a set of high-quality NDVI products to represent actual surface characteristics more accurately and naturally. Climate and geographical products are used as model inputs to describe environmental factors. They represent the random forest (RF) model that establishes relationships between MODIS NDVI products and meteorological products in high-quality areas. In addition, auxiliary data and empirical knowledge are employed to meet filling requirements. Notably, the random forest (RF) algorithm exhibits a mean absolute error (MAE) of 0.024 and a root mean squared error (RMSE) of 0.034, in addition to a coefficient of determination (R2) value of 0.974. Furthermore, the MAE and RMSE of the RF-based method decreased by 0.014 and 0.019, respectively, when compared to those of the STSG (spatial–temporal Savitzky–Golay) plan and by 0.013 and 0.015, respectively, when compared to the LSTM (long short-term memory) method. R2 increased by 0.039 and 0.027, respectively, compared to the STSG and LSTM methods. We introduced a novel series of NDVI products that demonstrated consistent spatial and temporal connectivity. The novel product exhibits enhanced adaptability to intricate environmental conditions and promises the potential for utilization in investigating vegetation dynamics within the Chinese region.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3