CRNN: Collaborative Representation Neural Networks for Hyperspectral Anomaly Detection

Author:

Duan Yuxiao1,Ouyang Tongbin2,Wang Jinshen1

Affiliation:

1. Department of Aerospace Information Engineering, Beihang University, Beijing 100191, China

2. Wuhan Digital Engineering Institute, Wuhan 430205, China

Abstract

Hyperspectral anomaly detection aims to separate anomalies and backgrounds without prior knowledge. The collaborative representation (CR)-based hyperspectral anomaly detection methods have gained significant interest and development because of their interpretability and high detection rate. However, the traditional CR presents a low utilization rate for deep latent features in hyperspectral images, making the dictionary construction and the optimization of weight matrix sub-optimal. Due to the excellent capacity of neural networks for generation, we formulate the deep learning-based method into CR optimization in both global and local streams, and propose a novel hyperspectral anomaly detection method based on collaborative representation neural networks (CRNN) in this paper. In order to gain a complete background dictionary and avoid the pollution of anomalies, the global dictionary is collected in the global stream by optimizing the dictionary atom loss, while the local background dictionary is obtained by using a sliding dual window. Based on the two dictionaries, our two-stream networks are trained to learn the global and local representation of hyperspectral data by optimizing the objective function of CR. The detection result is calculated by the fusion of residual maps of original and represented data in the two streams. In addition, an autoencoder is introduced to obtain the hidden feature considered as the dense expression of the original hyperspectral image, and a feature extraction network is concerned to further learn the comprehensive features. Compared with the shallow learning CR, the proposed CRNN learns the dictionary and the representation weight matrix in neural networks to increase the detection performance, and the fixed network parameters instead of the complex matrix operations in traditional CR bring a high inference efficiency. The experiments on six public hyperspectral datasets prove that our proposed CRNN presents the state-of-the-art performance.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3