Exploring the Best-Matching Precipitation Traits in Four Long-Term Mainstream Products over China from 1981 to 2020

Author:

Li Xuejiao12,Zhang Jutao2ORCID,Feng Qi2ORCID,Liu Wei2,Ao Yong1,Zhu Meng2ORCID,Yang Linshan2ORCID,Yin Xinwei2,Li Yongge2,Han Tuo2

Affiliation:

1. Shaanxi Key Laboratory of Land Reclamation Engineering, Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Land and Resources, School of Land Engineering, Chang’an University, Xi’an 710054, China

2. Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Key Laboratory of Ecohydrology of Inland River Basin, Qilian Mountains Eco-Environment Research Center in Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

As a major component of water cycle, the accuracy quantification of different precipitation products is critical for evaluating climate change and ecosystem functions. However, a lack of evidence is available to choose a precise precipitation product in relative applications. Here, to solve this limit, we analyze the spatiotemporal pattern and accuracy of four precipitation products, including CHIRPS V2.0, PERSIANN-CDR, ECMWF ERA5-Land, and GLDAS_NOAH025_3H, over China during the period of 1981–2020, based on the five precipitation traits (i.e., spatial pattern of multi-year average, annual trend, seasonality, frequency, and intensity), and meteorological gauge observations are taken as the benchmark. Our results show that, compared to other products, CHIRPS data has the strongest ability to present spatial pattern of multi-year average precipitation, especially in most parts of northeastern and southern China, and ERA5 has the weakest ability to simulate the multi-year average precipitation. All four precipitation products can accurately depict the spatial pattern of seasonality, among which CHIRPS and ERA5 have the highest and lowest fitting ability, respectively, but four products poorly describe the spatial pattern of precipitation intensity and frequency at a daily scale. These products only correctly predict the interannual precipitation trend in some local areas. Our findings provide evidences to select high-quality precipitation data, and could help to improve the accuracy of relative geophysical models.

Funder

the National Natural Science Foundation of China

National Key R&D Program of China

Science and Technology Program of Gansu Province, China

Key Laboratory of Degraded and Unused Land Consolidation Engineering, MNR

Shaanxi Key Laboratory of Land Consolidation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3