Improved Multi-GNSS PPP Partial Ambiguity Resolution Method Based on Two-Step Sorting Criterion

Author:

Zhao Lin1,Sun Zhiguo1,Yang Fuxin1ORCID,Liu Xiaosong1,Zhang Jie1

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

Multi-GNSS PPP partial ambiguity resolution (PAR) can improve the fixing success rate and shorten the time to first fix (TTFF). Ambiguity subset selection based on the bootstrapping success rate sorting criterion (BSSC) is widely used in PPP PAR due to its ease of computation and comprehensive evaluation of the global quality of ambiguity solutions. However, due to the influence of unmodeled errors, such as atmospheric residuals and gross errors, ambiguity parameter estimation will inevitably introduce bias. For ambiguity parameters with bias, their variance will converge incorrectly and will not accurately reflect the estimation accuracy. As a result, the selected ambiguity subset based on the BSSC becomes inaccurate, affecting the fixing success rate and TTFF. Therefore, we proposed an improved multi-GNSS PPP PAR method based on a two-step sorting criterion (TSSC). This method aims to address the influence of inaccurate variance of ambiguity parameters, particularly those with low observation quality, on the ambiguity subset selection based on the BSSC. The ambiguity subset satisfying the preset success rate threshold is selected to reduce the influence of unconverged ambiguity on the TSSC. In the first step of the sorting process, the observations whose elevation angle is below 30° or whose posterior residual falls into the IGG3 model reduction domain are clustered together. The posterior observation weight criterion (POWC) instead of the BSSC is adopted to sort ambiguities to overcome the false convergence of variance of ambiguity parameters. In the second step of the sorting process, the remaining ambiguities with reasonable variances are sorted based on the BSSC. Finally, the bottom ambiguity is removed one by one from the ambiguity subset sorted based on the two-step sorting criterion (TSSC) until the requirements of the ratio test for LAMBDA are met. The static data from 10 MGEX stations over a period of 30 days, along with urban kinematic data, were collected to validate the proposed method. Compared with the PAR based on the BSSC, the static experiments demonstrated a reduction of 8.7% and 16.8% in the TTFF and convergence time, respectively. Additionally, the positioning accuracy in the east, north, and up directions was improved by 20.1%, 17.1%, and 4.67%, respectively. Furthermore, the kinematic experiment revealed that the TTFF and convergence time decreased from 1.65 min and 10.5 min to 1.3 min and 1.8 min, respectively, with higher positioning accuracy.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3