Removing Moving Objects without Registration from 3D LiDAR Data Using Range Flow Coupled with IMU Measurements

Author:

Cai Yi1,Li Bijun1ORCID,Zhou Jian1ORCID,Zhang Hongjuan1,Cao Yongxing1ORCID

Affiliation:

1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

Abstract

Removing moving objects from 3D LiDAR data plays a crucial role in advancing real-time odometry, life-long SLAM, and motion planning for robust autonomous navigation. In this paper, we present a novel method aimed at addressing the challenges faced by existing approaches when dealing with scenarios involving significant registration errors. The proposed approach offers a unique solution for removing moving objects without the need for registration, leveraging range flow estimation combined with IMU measurements. To this end, our method performs global range flow estimation by utilizing geometric constraints based on the spatio-temporal gradient information derived from the range image, and we introduce IMU measurements to further enhance the accuracy of range flow estimation. Through extensive quantitative evaluations, our approach showcases an improved performance, with an average mIoU of 45.8%, surpassing baseline methods such as Removert (43.2%) and Peopleremover (32.2%). Specifically, it exhibits a substantial improvement in scenarios characterized by a deterioration in registration performance. Moreover, our method does not rely on costly annotations, which make it suitable for SLAM systems with different sensor setups.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Key Research and Development Projects in Hubei Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3