Comprehensive Evaluation of High-Resolution Satellite Precipitation Products over the Qinghai–Tibetan Plateau Using the New Ground Observation Network

Author:

Liu Zhaofei123ORCID

Affiliation:

1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources, Beijing 101149, China

Abstract

Satellite precipitation products (SPPs) have been widely evaluated at regional scales. However, there have been few quantitative comprehensive evaluations of SPPs using multiple indices. Ten high-resolution SPPs were quantitatively and comprehensively evaluated from precipitation occurrence and series indices using an improved rank score (RS) method in the data-scarce Qinghai–Tibetan Plateau (QTP). The new observation network, along with a number of national basic stations, was applied for SPP evaluation to obtain more reliable results. The results showed that the GPM and MSWEP showed the strongest overall performance, with an RS value of 0.75. CHIRPS and GPM had the strongest performance at measuring precipitation occurrence (RS = 0.92) and series (RS = 0.75), respectively. The optimal SPPs varied in evaluation indices, but also concentrated in the MSWEP, GPM, and CHIRPS. The bias of SPPs was markedly in the QTP, with relative error generally between −80% and 80%. In general, most SPPs showed the ability to detect precipitation occurrence. However, the SPPs showed relatively weak performance at measuring precipitation series. The mean Kling–Gupta efficiency of all stations was <0.50 for each SPP. The SPPs showed better performance in monsoon-affected regions, which mainly include the Yangtze, Yellow, Nu–Salween, Lancang–Mekong, Yarlung Zangbo–Bramaputra, and Ganges river basins. Performance was relatively poor in the westerly circulation areas, which mainly include the Tarim, Indus, and QTP inland river basins. The performance of SPPs showed a seasonal pattern during the year for most occurrence indices. The performance of SPPs in different periods was opposite in different indices. Therefore, multiple indices representing different characteristics are recommended for the evaluation of SPPs to obtain a comprehensive evaluation result. Overall, SPP measurement over the QTP needs further improvement, especially with regard to measuring precipitation series. The proposed improved RS method can also potentially be applied for comprehensive evaluation of other products and models.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3