A Systematic Review of Statistical and Machine Learning Methods for Electrical Power Forecasting with Reported MAPE Score

Author:

Vivas ElianaORCID,Allende-Cid HéctorORCID,Salas RodrigoORCID

Abstract

Electric power forecasting plays a substantial role in the administration and balance of current power systems. For this reason, accurate predictions of service demands are needed to develop better programming for the generation and distribution of power and to reduce the risk of vulnerabilities in the integration of an electric power system. For the purposes of the current study, a systematic literature review was applied to identify the type of model that has the highest propensity to show precision in the context of electric power forecasting. The state-of-the-art model in accurate electric power forecasting was determined from the results reported in 257 accuracy tests from five geographic regions. Two classes of forecasting models were compared: classical statistical or mathematical (MSC) and machine learning (ML) models. Furthermore, the use of hybrid models that have made significant contributions to electric power forecasting is identified, and a case of study is applied to demonstrate its good performance when compared with traditional models. Among our main findings, we conclude that forecasting errors are minimized by reducing the time horizon, that ML models that consider various sources of exogenous variability tend to have better forecast accuracy, and finally, that the accuracy of the forecasting models has significantly increased over the last five years.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3