Global Resource Circularity for Lithium-Ion Batteries up to 2050: Traction and Stationary Use

Author:

Kosai ShokiORCID,Takata Ukyo,Yamasue EijiORCID

Abstract

The use of the lithium-ion battery (LIB) in both traction and stationary applications has become ubiquitous. It is essential that retired LIBs are wisely treated, with a basis in the concept of the circular economy, to mitigate primary resource use. A closed-loop repurposing and recycling treatment is required. Thus, using the concept of total material requirement as an indicator of natural resource use based on mining activity, a dynamic material flow analysis was executed considering the degradation of the battery, its lifespan, and demand patterns under several scenarios. Then, the effect of circularity on the savings in global natural resource use involved across the entire lifecycles of LIBs was evaluated. It was found that the global resource use for LIBs will increase to between 10 and 48 Gt in 2050. Circularity has the potential to contribute to an 8–44% reduction in the global resource use associated with LIBs in 2050. It was also found that a longer lifespan in the years leading up to 2050 would have a greater impact on the reduction of resource use for LIBs, despite the lower effectiveness of circularity, because it would reduce the demand for LIBs.

Funder

Japan Society for the Promotion of Science

Ministry of the Environment

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3