Optimum Fleet Selection Using Machine Learning Algorithms—Case Study: Zenouz Kaolin Mine

Author:

Nobahar PouyaORCID,Pourrahimian YasharORCID,Mollaei Koshki Fereidoun

Abstract

This paper presents the machine learning (ML) method, a novel approach that could be a profitable idea to optimize fleet management and achieve a sufficient output to reduce operational costs, by diminishing trucks’ queuing time and excavators’ idle time, based on the best selection of the fleet. The performance of this method was studied at the Zenouz kaolin mine to optimize the type of loader and the number of trucks used to supply the processing plant’s ore demands. Accordingly, five years’ data, such as dates, weather conditions, number of trucks, routes, loader types, and daily hauled ore, were collected, adapted, and processed to train the following five practical algorithms: linear regression, decision tree, K-nearest neighbour, random forest, and gradient boosting algorithm. By comparing the results of the algorithms, the gradient boosting decision tree algorithm was determined to be the best fit and predicted test data values with 85% accuracy. Subsequently, 11,322 data were imported into the machine as various scenarios and daily hauled minerals as output results were predicted for each working zone individually. Finally, the data which had the minimum variation from the selected required scheduled value, and its related data concerning loader type and the number of demanded trucks, were indicated for each day of the working year.

Publisher

MDPI AG

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3