Unsupervised Domain Adaptation with Shape Constraint and Triple Attention for Joint Optic Disc and Cup Segmentation

Author:

Zhang Fengming,Li Shuiwang,Deng Jianzhi

Abstract

Currently, glaucoma has become an important cause of blindness. At present, although glaucoma cannot be cured, early treatment can prevent it from getting worse. A reliable way to detect glaucoma is to segment the optic disc and cup and then measure the cup-to-disc ratio (CDR). Many deep neural network models have been developed to autonomously segment the optic disc and the optic cup to help in diagnosis. However, their performance degrades when subjected to domain shift. While many domain-adaptation methods have been exploited to address this problem, they are apt to produce malformed segmentation results. In this study, it is suggested that the segmentation network be adjusted using a constrained formulation that embeds prior knowledge about the shape of the segmentation areas that is domain-invariant. Based on IOSUDA (i.e., Input and Output Space Unsupervised Domain Adaptation), a novel unsupervised joint optic cup-to-disc segmentation framework with shape constraints is proposed, called SCUDA (short for Shape-Constrained Unsupervised Domain Adaptation). A shape constrained loss function is novelly proposed in this paper which utilizes domain-invariant prior knowledge concerning the segmentation region of the joint optic cup–optical disc of fundus images to constrain the segmentation result during network training. In addition, a convolutional triple attention module is designed to improve the segmentation network, which captures cross-dimensional interactions and provides a rich feature representation to improve the segmentation accuracy. Experiments on the RIM-ONE_r3 and Drishti-GS datasets demonstrate that the algorithm outperforms existing approaches for segmenting optic discs and cups.

Funder

National Natural Science Foundation of China

Guangxi Science and Technology Base and Talent Special Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3