Role of Nonlinear Four-Wave Interactions Source Term on the Spectral Shape

Author:

Ponce de León SoniaORCID,Osborne Alfred R.

Abstract

The goal of this paper is to investigate the importance of the four-wave nonlinear interactions (SNL4) on the shape of the power spectrum of ocean waves. To this end, the following results are discussed: a number of authors have conducted modern experimental measurements of ocean waves over the past decades and found that the measured power spectrum has (a) a very high central peak (characterized by the parameter γ, developed in the 1970s in the JONSWAP program) and (b) enhanced high-frequency channels which lead to the phenomenon of “bimodality”, also a well-known phenomenon. We discuss how a numerical hindcast of the Draupner storm (1995) with the standard code WAVEWATCH-III with full Boltzmann interactions also reflects these previously experimentally determined spectral shapes. Our results suggest that the use of the full Boltzmann interactions (as opposed to the discrete interaction approximation often employed for forecasting/hindcasting) is important for obtaining this characteristic physical spectral shape of the power spectrum.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3