Sensitivities of Bottom Stress Estimation to Sediment Stratification in a Tidal Coastal Bottom Boundary Layer

Author:

Peng Yun,Yu QianORCID,Wang YunweiORCID,Zhu QingguangORCID,Wang Ya Ping

Abstract

The bottom friction velocity (U*), which controls seabed erosion and deposition, plays a critical role in sediment transport in tidal coastal bottom boundary layers. Approaches have been proposed to calculate U*, including the log profile (LP) estimation, the direct covariance (COV) measurement, and the turbulent kinetic energy (TKE) method. However, the LP method assumes homogeneous flow and the effects of stratification need to be taken into account. Here, field investigations of hydrodynamics and sediment dynamics were carried out on the Jiangsu Coast, China. Two acoustic Doppler velocimeters (ADV) velocity measurements at 0.2 and 1 m above the seabed have been used to estimate U*, based on the aforementioned three methods. The COV and TKE methods provided reasonable estimations of U*, while a pronounced overestimation was identified when using the LP method. This overestimation can be attributed to the stratification effects associated with the vertical suspended sediment concentration (SSC) gradient near the bottom. Then, three models were utilized to correct the overestimation, in which the gradient/flux Richardson number was modified with empirical constants α, β, and A to parameterize the stratification effects in the logarithmic velocity distribution. The values of α, β, and A derived from the observation are smaller than the results from previous investigations. These modified logarithmic velocity distribution models can be applied in numerical simulations when sediment stratification is important.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference47 articles.

1. Coastal and Estuarine Sediment Dynamics;Dyer,1986

2. Coastal Bottom Boundary Layers and Sediment Transport;Nielsen,1992

3. The Benthic Boundary Layer: Transport Processes and Biogeochemistry;Boudreau,2007

4. The Bottom Boundary Layer

5. Dynamics of Marine Sands: A Manual for Practical Applications;Soulsby,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3