Abstract
Surface dissolved dimethylsulfide (DMS) and depth-integrated dimethylsulfoniopropionate (DMSP) measurements were made from March to April 2004 during the SOLAS Air–Sea Gas Exchange Experiment (SAGE), a multiple iron enrichment experiment in subantarctic waters SE of New Zealand. During the first two iron enrichments, chl a and DMS production were constrained, but during the third enrichment, large pulses of DMS occurred in the fertilised IN patch, compared with the unfertilised OUT patch. During the third and fourth iron infusions, total chl a concentrations doubled from 0.52 to 1.02 µg/L. Hapto8s and prasinophytes accounted for 50%, and 20%, respectively, of total chl a. The large pulses of DMS during the third iron enrichment occurred during high dissolved DMSP concentrations and wind strength; changes in dinoflagellate, haptophyte, and cyanobacteria biomass; and increased microzooplankton grazing that exerted a top down control on phytoplankton production. A further fourth iron enrichment did cause surface waters to increase in DMS, but the effect was not as great as that recorded in the third enrichment. Differences in the biological response between SAGE and several other iron enrichment experiments were concluded to reflect microzooplankton grazing activities and the microbial loop dominance, resulting from mixing of the MLD during storm activity and high winds during iron enrichment.
Funder
Southern Cross University
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference48 articles.
1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014
2. Glacial-interglacial CO2change: The Iron Hypothesis
3. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization
4. Biogeochemical Controls and Feedbacks on Ocean Primary Production
5. Iron Limitation in the Oceans;Watson,2001
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献