Nonintrusive and Effective Volume Reconstruction Model of Swimming Sturgeon Based on RGB-D Sensor

Author:

Lin Kai12ORCID,Zhang Shiyu3ORCID,Hu Junjie13,Li Hongsong4,Guo Wenzhong5,Hu Hongxia12

Affiliation:

1. Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences & National Engineering Research Center for Freshwaters (Beijing), Beijing 100068, China

2. Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, China

3. School of Instrument Science and Opto Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China

4. School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China

5. Intelligent Equipment Technology Research Center of Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Abstract

The sturgeon is an important commercial aquaculture species in China. The measurement of sturgeon mass plays a remarkable role in aquaculture management. Furthermore, the measurement of sturgeon mass serves as a key phenotype, offering crucial information for enhancing growth traits through genetic improvement. Until now, the measurement of sturgeon mass is usually conducted by manual sampling, which is work intensive and time consuming for farmers and invasive and stressful for the fish. Therefore, a noninvasive volume reconstruction model for estimating the mass of swimming sturgeon based on RGB-D sensor was proposed in this paper. The volume of individual sturgeon was reconstructed by integrating the thickness of the upper surface of the sturgeon, where the difference in depth between the surface and the bottom was used as the thickness measurement. To verify feasibility, three experimental groups were conducted, achieving prediction accuracies of 0.897, 0.861, and 0.883, which indicated that the method can obtain the reliable, accurate mass of the sturgeon. The strategy requires no special hardware or intensive calculation, and it provides a key to uncovering noncontact, high-throughput, and highly sensitive mass evaluation of sturgeon while holding potential for evaluating the mass of other cultured fishes.

Funder

National Natural Science Foundation of China

Beijing Academy of Agriculture and Forestry Science Youth Science Foundation

Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs

Beijing Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3