A High-Resolution Network with Strip Attention for Retinal Vessel Segmentation

Author:

Ye Zhipin1,Liu Yingqian1,Jing Teng1,He Zhaoming2,Zhou Ling1ORCID

Affiliation:

1. Research Center of Fluid Machinery Engineering & Technology, Jiangsu University, Zhenjiang 212013, China

2. Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79411, USA

Abstract

Accurate segmentation of retinal vessels is an essential prerequisite for the subsequent analysis of fundus images. Recently, a number of methods based on deep learning have been proposed and shown to demonstrate promising segmentation performance, especially U-Net and its variants. However, tiny vessels and low-contrast vessels are hard to detect due to the issues of a loss of spatial details caused by consecutive down-sample operations and inadequate fusion of multi-level features caused by vanilla skip connections. To address these issues and enhance the segmentation precision of retinal vessels, we propose a novel high-resolution network with strip attention. Instead of the U-Net-shaped architecture, the proposed network follows an HRNet-shaped architecture as the basic network, learning high-resolution representations throughout the training process. In addition, a strip attention module including a horizontal attention mechanism and a vertical attention mechanism is designed to obtain long-range dependencies in the horizontal and vertical directions by calculating the similarity between each pixel and all pixels in the same row and the same column, respectively. For effective multi-layer feature fusion, we incorporate the strip attention module into the basic network to dynamically guide adjacent hierarchical features. Experimental results on the DRIVE and STARE datasets show that the proposed method can extract more tiny vessels and low-contrast vessels compared with existing mainstream methods, achieving accuracies of 96.16% and 97.08% and sensitivities of 82.68% and 89.36%, respectively. The proposed method has the potential to aid in the analysis of fundus images.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3