Type 2 Nondeep Physiological Dormancy in Seeds of Fraxinus chinensis subsp. rhynchophylla (Hance) A.E.Murray

Author:

An Kangming,Yang Minghan,Baskin Carol CaudleORCID,Li Mingyue,Zhu Meiru,Jiao Chunjing,Wu Haibo,Zhang PengORCID

Abstract

Fraxinus chinensis subsp. rhynchophylla (Oleaceae), hereafter F. rhynchophylla, is an important timber species in northeast China; however, little is known about its seed dormancy and germination, which hinders regeneration of the species from seeds for reforestation and conservation. Our aim was to determine the class of seed dormancy and how to break it. Studies were conducted to determine the permeability of the seed coat to water, changes in embryo development during cold stratification and effects of cold stratification on germination over a range of temperatures. The seeds were water-permeable, and the embryo was fully developed and filled the embryonic cavity. Cold stratification at 5 °C for 8 weeks was effective in breaking dormancy; thus, we conclude that the seeds have nondeep physiological dormancy (PD). As cold stratification time was increased, the ability of seeds to germinate at low temperatures (e.g., 10 °C and 15 °C) increased, indicating the presence of Type 2 nondeep PD, in which the minimum temperature for germination decreases during dormancy-break. Nondormant seeds germinated to high percentages and rates at constant temperatures of 25 °C (germination percentage was 63%) and at alternating temperature regimes of 35 °C/25 °C, 30 °C/15 °C, 25 °C/20 °C and 20 °C/10 °C (germination percentage was 66%, 67%, 65% and 66%, respectively). To produce seedlings, we recommend 8 weeks of cold stratification at 5 °C before sowing the seeds at temperatures ranging from 15 °C to 30 °C.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Forestry

Reference45 articles.

1. The great diversity in kinds of seed dormancy: A revision of the Nikolaeva–Baskin classification system for primary seed dormancy;Seed Sci. Res.,2021

2. Tansley review: Seed dormancy and the control of germination;New Phytol.,2006

3. Nikolaeva, M.G. (1969). Seeds, NSF.

4. Baskin, C.C., and Baskin, J.M. (2014). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, Academic Press. [2nd ed.].

5. Germination variation facilitates the evolution of seed dormancy when coupled with seedling competition;Theor. Popul. Biol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3