Magnetic Iron Nanoparticles: Synthesis, Surface Enhancements, and Biological Challenges

Author:

Vargas-Ortiz Jesús Roberto,Gonzalez Carmen,Esquivel KarenORCID

Abstract

This review focuses on the role of magnetic nanoparticles (MNPs), their physicochemical properties, their potential applications, and their association with the consequent toxicological effects in complex biologic systems. These MNPs have generated an accelerated development and research movement in the last two decades. They are solving a large portion of problems in several industries, including cosmetics, pharmaceuticals, diagnostics, water remediation, photoelectronics, and information storage, to name a few. As a result, more MNPs are put into contact with biological organisms, including humans, via interacting with their cellular structures. This situation will require a deeper understanding of these particles’ full impact in interacting with complex biological systems, and even though extensive studies have been carried out on different biological systems discussing toxicology aspects of MNP systems used in biomedical applications, they give mixed and inconclusive results. Chemical agencies, such as the Registration, Evaluation, Authorization, and Restriction of Chemical substances (REACH) legislation for registration, evaluation, and authorization of substances and materials from the European Chemical Agency (ECHA), have held meetings to discuss the issue. However, nanomaterials (NMs) are being categorized by composition alone, ignoring the physicochemical properties and possible risks that their size, stability, crystallinity, and morphology could bring to health. Although several initiatives are being discussed around the world for the correct management and disposal of these materials, thanks to the extensive work of researchers everywhere addressing the issue of related biological impacts and concerns, and a new nanoethics and nanosafety branch to help clarify and bring together information about the impact of nanoparticles, more questions than answers have arisen regarding the behavior of MNPs with a wide range of effects in the same tissue. The generation of a consolidative framework of these biological behaviors is necessary to allow future applications to be manageable.

Funder

Universidad Autónoma de Querétaro

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3