Deep-Learning Algorithmic-Based Improved Maximum Power Point-Tracking Algorithms Using Irradiance Forecast

Author:

Roh ChanORCID

Abstract

Renewable energy is a key technology for achieving carbon-free energy transitions, and solar power systems are one of the most reliable resources for achieving this. Solar power systems have a simple structure and are inexpensive. However, depending on the input irradiance, the existing maximum output control algorithm (P&O) has disadvantages due to its slow transient response and steady-state vibration. Therefore, in this paper, we propose a maximum output control algorithm based on a deep learning algorithm that can predict the input irradiance. This can achieve a quick transient response and steady-state stability. The proposed method predicts the irradiance based on the output voltage/current and power of the photovoltaic (PV) system and calculates the duty ratio that can accurately follow the maximum output point according to the irradiance. The deep learning model applied in this study was trained based on the experimental results using a 100 W PV panel, and the performance of the proposed algorithm was verified by comparing its performance with that of the conventional algorithm under various input irradiance conditions. The proposed algorithm exhibits a maximum efficiency increase of 11.24% under the same input conditions as those of the existing algorithms.

Funder

the National Research Foundation of Korea

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Deep Learning Approach for MPPT of PV System: Design and Comparison;2024 21st International Multi-Conference on Systems, Signals & Devices (SSD);2024-04-22

2. Novel Control Technology for Reducing Output Power Harmonics of Standalone Solar Power Generation Systems;Processes;2023-09-16

3. Maximum Power Point Tracking Simulation for Photovoltaic Systems Using Perturb and Observe Algorithm;Solar Radiation - Enabling Technologies, Recent Innovations, and Advancements for Energy Transition [Working Title];2023-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3