Study of Solidifying Surplus Sludge as Building Material Using Ordinary Portland Cement

Author:

Liang JilingORCID,He Han,Wei Jianwei,Han Tingting,Wang Wenwu,Wang Lu,Han Jie,Zhang Lunqiu,Zhang Yan,Ma Haiqiang

Abstract

In an attempt to effectively utilize a multitude of surplus sludge from sewage treatment plants, ordinary Portland cement was used to solidify the dry surplus sludge as a building material. The dry surplus sludge and cement were mixed at different proportions with a certain dosage of water and then cured for 3–60 days at room temperature. The unconfined compression strength (RC) of solidified blocks was investigated with respect to the effects of the ratio of liquid to solid (Rl/S), surplus sludge dosage (DS), the dosage of sodium silicate (DNa2SiO3), and the proportion of fly ash (WF). The fabricated solidified blocks were characterized by scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), and X-ray Diffraction Analysis (XRD). The results demonstrated that RC at 60 days reduced obviously with the increase in Rl/s when Ds was given, whereas RC reduced with DS increased to 15.0 wt% from 5.0 wt% for solidified blocks. When DS was 5.0 wt%, RC of 28 days was reduced from 20.87 MPa to 14.50 MPa, with an increase in Rl/s from 0.35 to 0.55. For the given Rl/s, such as Rl/s = 0.35, RC at 60 days was 23.75 MPa, 2.80 MPa, and 2.50 MPa when DS were 5.0 wt%, 10.0 wt%, and 15.0 wt%, respectively, which were relatively lower in comparison to that of Portland cement solidified blocks without surplus sludge (51.40 MPa). In addition, the addition of Na2SiO3 and fly ash was favorable in terms of improving the RC for solidified blocks. RC of 60 days increased initially and then reduced with the increase in DNa2SiO3 from 0.0 wt% to 9.0 wt% at Rl/s = 0.45 and DS = 5.0 wt%. At DNa2SiO3 = 7.5 wt%, Rl/s = 0.45, and DS = 5.0 wt%, the highest RC value of 34.70 MPa was achieved after being cured for 60 days. Furthermore, RC of 60 days increased initially and then reduced with WF increasing from 0.0 wt% to 25.0 wt%, and the highest RC value of 34.35 MPa was achieved at WF = 10.0 wt%, Rl/s = 0.45, and DS = 5.0 wt%. At the ratio of DNa2SiO3 = 7.50 wt%, Rl/S = 0.35, WF = 20 wt%, DS = 15.0 wt% and M = 1.00, RC of 28 days reached 26.70 MPa. With these values, the utilization of sludge utilized (DS = 15.0 wt%) was increased by double compared with DS = 5.0 wt% (20.87 MPa). To investigate the effect of environmental temperature on the mechanical properties and mass of solidified blocks, the freeze-thaw cycling experiment was carried out. The RC of 28 days and the mass of the solidified block reduced with the number of freeze-thaw cycles, increasing for solidified blocks with DS of 5.0 wt%, 10.0 wt%, and 15.0 wt%, manifesting a decrease of 25.60%, 32.30%, and 40.60% for RC and 3.40%, 4.10%, and 4.90% for mass, respectively. This work provides sufficient evidence that surplus sludge has a huge potential application for building materials from the perspective of improving their mechanical properties. It provides an important theoretical basis for the disposal as well as efficient utilization of sludge.

Funder

China College Students Innovation and Entrepreneurship Fund

Talent Scientific Research Fund of Liaoning Petrochemical University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3