Fe–Mn Oxide Composite Activated Peroxydisulfate Processes for Degradation of p-Chloroaniline: The Effectiveness and the Mechanism

Author:

Shi Yu,Ma Panfeng,Qiao Lin,Liu Bingtao

Abstract

The chemical co-precipitation method was used to prepare magnetically separable Fe–Mn oxide composites, and the degradation of p-chloroaniline (PCA) using MnFe2O4 activated peroxydisulfate (PDS). The MnFe2O4 catalyst exhibited highly catalytic activity in the experiments. XRD, FTIR, SEM and TEM were used to characterize the catalytic materials. MnFe2O4 calcined at 500 °C was more suitable as a catalytic material for PCA degradation. The elevated reaction temperature was beneficial to the degradation of PCA in neutral pH solution. The reaction mechanism of the MnFe2O4 catalyzed oxidative degradation of PCA by PDS was investigated by free radical quenching experiments and XPS analysis. The results showed that sulfate radicals (SO4•−), hydroxyl radicals (•OH) and singlet oxygen (1O2) may all be participated in the degradation of PCA. XPS spectra showed that the electron gain and loss of Mn2+ and Fe3+ was the main cause of free radical generation. The possible intermediates in the degradation of PCA were determined by HPLC-MS, and possible degradation pathways for the degradation of PCA by the MnFe2O4/PDS system were proposed.

Funder

Key Research and Promotion Project of Henan Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3