Life Cycle Energy Consumption and Greenhouse Gas Emissions Analysis of Primary and Recycled Aluminum in China

Author:

Peng TianduoORCID,Ren Lei,Du Ershun,Ou XunminORCID,Yan XiaoyuORCID

Abstract

Aluminum production is a major energy consumer and important source of greenhouse gas (GHG) emissions globally. Estimation of the energy consumption and GHG emissions caused by aluminum production in China has attracted widespread attention because China produces more than half of the global aluminum. This paper conducted life cycle (LC) energy consumption and GHG emissions analysis of primary and recycled aluminum in China for the year 2020, considering the provincial differences on both the scale of self-generated electricity consumed in primary aluminum production and the generation source of grid electricity. Potentials for energy saving and GHG emissions reductions were also investigated. The results indicate that there are 157,207 MJ of primary fossil energy (PE) consumption and 15,947 kg CO2-eq of GHG emissions per ton of primary aluminum ingot production in China, with the LC GHG emissions as high as 1.5–3.5 times that of developed economies. The LC PE consumption and GHG emissions of recycled aluminum are very low, only 7.5% and 5.3% that of primary aluminum, respectively. Provincial-level results indicate that the LC PE and GHG emissions intensities of primary aluminum in the main production areas are generally higher while those of recycled aluminum are lower in the main production areas. LC PE consumption and GHG emissions can be significantly reduced by decreasing electricity consumption, self-generated electricity management, low-carbon grid electricity development, and industrial relocation. Based on this study, policy suggestions for China’s aluminum industry are proposed. Recycled aluminum industry development, restriction of self-generated electricity, low-carbon electricity utilization, and industrial relocation should be promoted as they are highly helpful for reducing the LC PE consumption and GHG emissions of the aluminum industry. In addition, it is recommended that the central government considers the differences among provinces when designing and implementing policies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference46 articles.

1. China Nonferrous Metals Industry 2020 Economic Operation Report. 2021.

2. Statistics of Global Primary Aluminum Production. 2021.

3. (In Chinese). The Yearbook of Nonferrous Metals Industry of China 2020, 2021.

4. China Energy Statistical Yearbook 2021, 2022.

5. Hu, B. The change of electrolytic aluminum industry under carbon neutrality target. China Nonferrous Met News, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3