Strength Enhancement of Laser Powder Bed Fusion 316L by Addition of Nano TiC Particles

Author:

Liu Yanyan1,Xie Deqiao2ORCID,Lv Fei3

Affiliation:

1. College of Intelligent Manufacturing, Nanjing University of Science and Technology Zijin College, Nanjing 210046, China

2. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

3. Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

Abstract

316L stainless steel is widely used in various industrial fields, but its strength is relatively low. The improvement of its strength has become a research hotspot. In this study, nano titanium carbide (TiC) particles are ball milled with 316L with the addition of 2 wt% and 4 wt%. The composite powder was then used for the fabrication of samples by laser powder bed fusion. The results show that the TiC is uniformly distributed in the microstructure. With the addition of TiC, the average size of the grains is significantly reduced. The strength, hardness, and wear resistance of TiC/316L samples have been greatly improved. The tensile strength of formed 2 wt% TiC/316L is 948 MPa, together with a extension rate of 36.0%, which has been increased by 42.6% and 79.7%, respectively. This study provides an effective way to improve the strength at room temperature and the high temperature of 316L built by laser powder bed fusion.

Funder

Key Research and Development Program of Jiangsu Provincial Department of Science and Technology of China

National Science Key Lab Fund Project

Education Research Project of Nanjing University of Science and Technology Zijin College

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3