Thermo-Hydric Study of Wood-Based Materials under Thermal Comfort Conditions

Author:

Haddouche Mohamed1,Martini Fahed2ORCID,Chaouch Mounir3,Ilinca Adrian2ORCID

Affiliation:

1. Wind Energy Research Laboratory (WERL), Université du Québec à Rimouski, UQAR, Rimouski, QC G5L 3A1, Canada

2. Mechanical Engineering Department, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada

3. Service de Recherche Et D’Expertise En Transformation Des Produits Forestiers, SEREX, Amqui, QC G5J 1K3, Canada

Abstract

This paper tackles the issue of moisture variation in wood-based materials, explicitly focusing on melamine-coated particleboard (hereafter referred to as melamine) and medium-density fiberboard (MDF) used in the third phase of wood industry transformation. The approach involves a comprehensive strategy for predicting moisture content variation, incorporating numerical simulation, experimental testing, and the application of artificial neural network (ANN) technology to enhance accuracy in furniture manufacturing. The developed ANN models are tailored to predict moisture content changes under specific thermal comfort conditions. Remarkably, these models demonstrate high precision, with an average error margin of only 1.40% for 8% moisture content (MC) and 2.85% for 12% MC in melamine, as well as 1.42% for 8% MC and 2.25% for 12% MC in MDF. These levels of precision surpass traditional models, emphasizing this study’s novelty and practical relevance to the industrial context. The findings indicate that ANN models adapt to diverse environmental conditions, presenting a robust tool for optimizing moisture management in wood-based materials. This research contributes valuable insights for improving the reliability and efficiency of moisture content predictions in the wood industry.

Funder

NSERC

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3