Comparison of Linear and Nonlinear Twist Extrusion Processes with Crystal Plasticity Finite Element Analysis

Author:

Şimşek Ülke12ORCID,Davut Kemal3,Miyamoto Hiroyuki4,Yalçinkaya Tuncay2ORCID

Affiliation:

1. Roketsan Missiles Industries Inc., Ankara 06780, Türkiye

2. Department of Aerospace Engineering, Middle East Technical University, Ankara 06800, Türkiye

3. Department of Material Science and Engineering, Izmir Institute of Technology, İzmir 35430, Türkiye

4. Department of Mechanical Engineering, Doshisha University, Kyoto 610-0321, Japan

Abstract

The mechanical characteristics of polycrystalline metallic materials are influenced significantly by various microstructural parameters, one of which is the grain size. Specifically, the strength and the toughness of polycrystalline metals exhibit enhancement as the grain size is reduced. Applying severe plastic deformations (SPDs) has a noticeable result in obtaining metallic materials with ultrafine-grained (UFG) microstructure. SPD, executed through conventional shaping methods like extrusion, plays a pivotal role in the evolution of the texture, which is closely related to the plastic behavior and ductility. A number of SPD processes have been developed to generate ultrafine-grained materials, each having a different shear deformation mechanism. Among these methods, linear twist extrusion (LTE) presents a non-uniform and non-monotonic form of severe plastic deformation, leading to significant shifts in the microstructure. Prior research demonstrates the capability of the LTE process to yield consistent, weak textures in pre-textured copper. However, limitations in production efficiency and the uneven distribution of grain refinement have curbed the widespread use of LTE in industrial settings. This has facilitated the development of an improved novel method, that surpasses the traditional approach, known as the nonlinear twist extrusion procedure (NLTE). The NLTE method innovatively adjusts the channel design of the mold within the twist section to mitigate strain reversal and the rotational movement of the workpiece, both of which have been identified as shortcomings of twist extrusion. Accurate anticipation of texture changes in SPD processes is essential for mold design and process parameter optimization. The performance of the proposed extrusion technique should still be studied. In this context, here, a single crystal (SC) of copper in billet form, passing through both LTE and NLTE, is analyzed, employing a rate-dependent crystal plasticity finite element (CPFE) framework. CPFE simulations were performed for both LTE and NLTE of SC copper specimens having <100> or <111> directions parallel to the extrusion direction initially. The texture evolution as well as the cross-sectional distribution of the stress and strain is studied in detail, and the performance of both processes is compared.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3