A Study on the Shrinkage and Compressive Strength of GGBFS and Metakaolin Based Geopolymer under Different NaOH Concentrations

Author:

Chen Yen-Chun1,Lee Wei-Hao1,Cheng Ta-Wui1ORCID,Li Yeou-Fong2ORCID

Affiliation:

1. Institute of Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

2. Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

Abstract

Geopolymers (GPs) are gaining prominence due to their low carbon emissions and sustainable attributes. However, one challenge with GPs, particularly those made with ground granulated blast furnace slag (GGBFS), is their significant shrinkage during the geopolymerization process, limiting its practical applicability. This study focuses on how the substitution ratio of metakaolin (MK) and the concentration of sodium hydroxide (NaOH) in the activator can influence the shrinkage and strength of a GGBFS-based GP. The experimental approach employed a 3 × 3 parameter matrix, which varied MK substitution ratios (0%, 50%, and 100%) and adjusted the NaOH concentration (6 M, 10 M, and 14 M). The results revealed that increasing MK substitution, particularly with 6 M NaOH activation, reduced the GP shrinkage but also diminished compressive strength, requiring higher NaOH concentrations for strength improvement. Statistical tools, including analysis of variance (ANOVA) and second-order response surface methodology (RSM), were employed for analysis. ANOVA results indicated the significant impacts of both the MK content and NaOH concentration on compressive strength, with no observable interaction. However, the shrinkage exhibited a clear interaction between MK content and NaOH concentration. The RSM model accurately predicted compressive strength and shrinkage, demonstrating a high predictive accuracy, for which the coefficients of determination (R2) were 0.99 and 0.98, respectively. The model provides a reliable method for determining the necessary compressive strength and shrinkage for GGBFS-based GP based on MK substitution and NaOH concentration. Within the optimization range, the RSM model compared with experimental results showed a 6.04% error in compressive strength and 0.77% error in shrinkage for one interpolated parameter set. This study establishes an optimized parameter range ensuring a GP performance that is comparable to or surpassing OPC, with a parameter set achieving a compressive strength of 34.9 MPa and shrinkage of 0.287% at 28 days.

Funder

Ministry of Education in Taiwan

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3