Preparation, Radiolabeling with 68Ga/177Lu and Preclinical Evaluation of Novel Angiotensin Peptide Analog: A New Class of Peptides for Breast Cancer Targeting

Author:

Okarvi Subhani M.1

Affiliation:

1. Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, MBC-03, P.O. Box 3354, Riyadh 11211, Saudi Arabia

Abstract

Aim: Angiotensin II (AngII) is known to play a significant part in the development of breast cancer by triggering cell propagation of breast cancer, tumor angiogenesis, and regulating tumor invasion and cell migration. AngII arbitrates its action via two G-protein-coupled receptors, AngII type 1 receptor (AT1) and AngII type 2 receptor (AT2). Overexpression of the AT1 receptor in breast cancer cells seems to promote tumor growth and angiogenesis, thus targeting the AT1 receptor using AngII peptide would facilitate the detection of breast carcinoma. We developed an AngII peptide intending to assess whether the peptide of the renin–angiotensin system holds the ability to target AT1 receptor-overexpressing breast cancer in vivo. Methods: DOTA-coupled AngII peptide was synthesized by conventional solid-phase peptide synthesis according to Fmoc/HATU chemistry. 68Ga/177Lu labeled AngII peptide was evaluated for its binding with TNBC MDA-MB-231 and ER+ MCF7 cell lines. Pharmacokinetics was studied in healthy balb/c mice and in vivo tumor targeting in nude mice with MDA-MB-231 tumors xenografts. Results: DOTA-AngII peptide was labeled efficiently with 68Ga/177Lu with high labeling efficiency (≥90%). The stability of the radiopeptide in human plasma was found to be high. The AngII peptide analog showed nanomolar (<40 nM) AT1 receptor-specific binding affinity. The radioactivity internalized into MDA-MBA-231 and MCF7 cells were 14.97% and 11.75%, respectively. In vivo, biodistribution in balb/c mice exhibited efficient clearance of 68Ga/177Lu-DOTA-AngII peptide from the blood and elimination predominantly by the renal system due to its hydrophilic nature. A low amount of radioactivity was seen in the major organs including lungs, liver, stomach, spleen, and intestines (<3% ID/g) except the kidneys. A high renal-urinary excretion was observed for the radiotracer. In the TNBC MDA-MB-231 xenografts model, radiolabeled AngII peptide exhibited specific and effective AT1-based targeting in vivo. A rapid and efficient tumor targeting (2.18% ID/g at 45 min p.i.) together with fast renal excretion (~67% ID) highlights the tumor-targeting potential of the radiotracer. The AT1 receptor specificity of the radiotracer was validated by blocking assays. Furthermore, PET imaging provided sufficient visualization of MDA-MB-231 tumors in nude mice. Conclusion: Our findings suggest that 68Ga/177Lu-DOTA-AngII peptide can be useful for the theranostic application of breast carcinomas. This study suggests the potential of this innovative class of peptides for rapid and efficient targeting of tumors and warrants further evaluation.

Funder

International Atomic Energy Agency

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3