Towards a Resilience to Stress Index Based on Physiological Response: A Machine Learning Approach

Author:

Diaz-Ramos Ramon E.ORCID,Gomez-Cravioto Daniela A.ORCID,Trejo Luis A.ORCID,López Carlos FigueroaORCID,Medina-Pérez Miguel AngelORCID

Abstract

This study proposes a new index to measure the resilience of an individual to stress, based on the changes of specific physiological variables. These variables include electromyography, which is the muscle response, blood volume pulse, breathing rate, peripheral temperature, and skin conductance. We measured the data with a biofeedback device from 71 individuals subjected to a 10-min psychophysiological stress test. The data exploration revealed that features’ variability among test phases could be observed in a two-dimensional space with Principal Components Analysis (PCA). In this work, we demonstrate that the values of each feature within a phase are well organized in clusters. The new index we propose, Resilience to Stress Index (RSI), is based on this observation. To compute the index, we used non-supervised machine learning methods to calculate the inter-cluster distances, specifically using the following four methods: Euclidean Distance of PCA, Mahalanobis Distance, Cluster Validity Index Distance, and Euclidean Distance of Kernel PCA. While there was no statistically significant difference (p>0.01) among the methods, we recommend using Mahalanobis, since this method provides higher monotonic association with the Resilience in Mexicans (RESI-M) scale. Results are encouraging since we demonstrated that the computation of a reliable RSI is possible. To validate the new index, we undertook two tasks: a comparison of the RSI against the RESI-M, and a Spearman correlation between phases one and five to determine if the behavior is resilient or not. The computation of the RSI of an individual has a broader scope in mind, and it is to understand and to support mental health. The benefits of having a metric that measures resilience to stress are multiple; for instance, to the extent that individuals can track their resilience to stress, they can improve their everyday life.

Funder

NOVUS

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3