Radio Channel Capacity with Directivity Control of Antenna Beams in Multipath Propagation Environment

Author:

Ziółkowski CezaryORCID,Kelner Jan M.ORCID,Krygier JarosławORCID,Chandra AniruddhaORCID,Prokeš AlešORCID

Abstract

The basic technology that will determine the expansion of the technical capabilities of fifth generation cellular systems is a massive multiple-input-multiple-output. Therefore, assessing the influence of the antenna beam orientations on the radio channel capacity is very significant. In this case, the effects of mismatching the antenna beam directions are crucial. In this paper, the methodology for evaluating changes in the received signal power level due to beam misalignment for the transmitting and receiving antenna systems is presented. The quantitative assessment of this issue is presented based on simulation studies carried out for an exemplary propagation scenario. For non-line-of-sight (NLOS) conditions, it is shown that the optimal selection of the transmitting and receiving beam directions may ensure an increase in the level of the received signal by several decibels in relation to the coaxial position of the beams. The developed methodology makes it possible to analyze changes in the radio channel capacity versus the signal-to-noise ratio and distance between the transmitter and receiver at optimal and coaxial orientations of antenna beams for various propagation scenarios, considering NLOS conditions. In the paper, the influence of the directional antenna use and their direction choices on the channel capacity versus SNR and the distance between the transmitter and receiver is shown.

Funder

Polish Ministry of Defense

Czech Science Foundation

Military University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3