Degradation Mechanism of a Sauce-Glazed Ware of the Song Dynasty Salvaged out of the Water at Dalian Island Wharf: Part I—The Effect of the Surface-Attached Composite Coagula

Author:

Ding Rao1234,Li Weidong1234ORCID,Yang Zelin5,Xu Changsong1234,Lu Xiaoke1234

Affiliation:

1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China

2. Key Scientific Research Base of Ancient Ceramics, State Administration for Cultural Heritage, Shanghai 201899, China

3. Key Laboratory of the Comprehensive Analysis Technology for Ancient Ceramics and Its Applications, Ministry of Culture and Tourism, Shanghai 201899, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

5. Institute of Cultural Relics and Archeology, Fujian Museum, Fuzhou 350025, China

Abstract

Dalian Island is located in the sea area near Pingtan County, Fujian, Southeast China. The sea area used to be the junction of the eastern and western ship routes on the Maritime Silk Road, and is also an important region for underwater archaeology in China. This study focused on a sauce-glazed ware of the Song Dynasty, with serious degradation, which was salvaged out of the water at the Dalian Island Wharf. Optical microscopy, scanning electron microscopy, X-ray diffraction analysis, and micro-Raman spectroscopy were used to comprehensively analyze the composition, phase attributes and microstructure of the ware and the surface-attached coagula. The findings revealed that the sea wave-borne debris scoured the surface of the ware, causing mechanical damage to varying degrees and a significant decrease in its degradation resistance. This was the primary factor accounting for the poor preservation state of the salvaged ceramic ware, and the precondition for the subsequent attachment of marine organisms and the deposition of inorganic pollutants. The calcareous skeletons formed on the surface induced by the bio-mineralization of coralline algae (a type of marine plant) could resist the mechanical action caused by the motion of sea waves, thereby slowing down the ware’s degradation process. In other words, the calcareous skeletons played a ‘bio-protective’ role to a certain degree. In addition, inorganic pollutants represented by iron rusts also participated in the corrosion of the glaze. Some pollutants were directly deposited on the pits and cracks on the surface of the ware, which brought stress to the glaze and glaze/body interface, causing the glaze to further crack and spall. Moreover, iron rusts reacted with the glaze, leading to chemical alteration, accompanied by the formation of iron silicate as the alteration product. Anorthite crystals in the interlayer did not participate in the reaction but remained at the original position. The alteration product gradually replaced the original glass phase of the glaze and entered into the body via pores and cracks. In conclusion, the complex degradation morphology of the salvaged sauce-glazed ware could be attributed to the combined action of mechanical damage, marine bio-fouling, and chemical alteration.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Materials Science

Reference29 articles.

1. Li, N.S. (2016). Research on the Protection of Porcelain Excavated from the Ocean, Science Press. (In Chinese).

2. Song, J.M. (2000). Ocean Chemistry in China, Ocean Press. (In Chinese).

3. Bekic, L. (2014). Conservation of Underwater Archaeological Finds Manual, International Centre for Underwater Archaeology in Zadar.

4. Buys, S., and Oakley, V. (2011). The Conservation and Restoration of Ceramics, Routledge.

5. Comparative study on desalination technology of ceramic wares excavated from “Nan’ao I.”;Xi;Sci. Conserv. Archaeol.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3