Growth of Low-Defect Nitrogen-Doped Graphene Film Using Condensation-Assisted Chemical Vapor Deposition Method

Author:

Guo Zhichao12,Ye Zhenya23,Yin Mengqing12,Dai Shixun1,Zhang Xiaohui4,Wang Wei2,Liu Zhaoping2

Affiliation:

1. School of Information Science and Engineering, Ningbo University, Ningbo 315201, China

2. Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, CAS Engineering Laboratory for Graphene, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China

3. Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230026, China

4. CRRC Industrial Academy Co., Ltd., Beijing 100039, China

Abstract

It is significantly important to modulate the electrical properties of graphene films through doping for building desired electronic devices. One of the effective doping methods is the chemical vapor deposition (CVD) of graphene films with heteroatom doping during the process, but this usually results in nitrogen-doped graphene with low doping levels, high defect density, and low carrier mobility. In this work, we developed a novel condensation-assisted CVD method for the synthesis of high-quality nitrogen-doped graphene (NG) films at low temperatures of 400 °C using solid 3,4,5-trichloropyridine as a carbon and nitrogen source. The condensation system was employed to reduce the volatilization of the solid source during the non-growth stage, which leads to a great improvement of quality of as-prepared NG films. Compared to the one synthesized using conventional CVD methods, the NG films synthesized using condensation-assisted CVD present extremely low defects with a ratio of from D- to G-peak intensity (ID/IG) in the Raman spectrum lower than 0.35. The corresponding total N content, graphitic nitrogen/total nitrogen ratio, and carrier mobility reach 3.2 at%, 67%, and 727 cm2V−1S−1, respectively. This improved condensation-assisted CVD method provides a facile and well-controlled approach for fabricating high-quality NG films, which would be very useful for building electronic devices with high electrical performance.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Materials Science

Reference51 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3