Hydrothermally Grown MoS2 as an Efficient Electrode Material for the Fabrication of a Resorcinol Sensor

Author:

Alsaeedi Huda1ORCID,Alsalme Ali1ORCID

Affiliation:

1. Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Recently, the active surface modification of glassy carbon electrodes (GCE) has received much attention for the development of electrochemical sensors. Nanomaterials are widely explored as surface-modifying materials. Herein, we have reported the hydrothermal synthesis of molybdenum disulfide (MoS2) and its electro-catalytic properties for the fabrication of a resorcinol sensor. Structural properties such as surface morphology of the prepared MoS2 was investigated by scanning electron microscopy and phase purity was examined by employing the powder X-ray diffraction technique. The presence of Mo and S elements in the obtained MoS2 was confirmed by energy-dispersive X-ray spectroscopy. Finally, the active surface of the glassy carbon electrode was modified with MoS2. This MoS2-modified glassy carbon electrode (MGC) was explored as a potential candidate for the determination of resorcinol. The fabricated MGC showed a good sensitivity of 0.79 µA/µMcm2 and a detection limit of 1.13 µM for the determination of resorcinol. This fabricated MGC also demonstrated good selectivity, and stability towards the detection of resorcinol.

Funder

Deputyship for Research & Innovation, Ministry of Education

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3