The Effect of Nitridation on Sputtering AlN on Composited Patterned Sapphire Substrate

Author:

Zhang Yi12,Zhu Guangmin2,Wang Jiangbo2,Le Zichun1ORCID

Affiliation:

1. Institute of Optical Engineering, College of Science, Zhejiang University of Technology, No. 288, Liuhe Road, Hangzhou 310023, China

2. Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, HC Semitek Corporation, No. 233, Suxi Road, Yiwu 322009, China

Abstract

Here, we report on the epitaxial growth of GaN on patterned SiO2-covered cone-shaped patterned sapphire surfaces (PSS). Physical vapor deposition (PVD) AlN films were used as buffers deposited on the SiO2-PSS substrates. The gallium nitride (GaN) growth on these substrates at different alternating radio frequency (RF) power and nitridation times was monitored with sequences of scanning electron microscopy (SEM) and atomic force microscopy (AFM) imaging results. The SEM and AFM show the detail of the crystalline process from different angles. Our findings show that the growth mode varies according to the deposition condition of the AlN films. We demonstrate a particular case where a low critical alternating current (AC) power is just able to break SiO2 covalent bonds, enabling the growth of GaN on the sides of the patterns. Furthermore, we show that by using the appropriate nitridation condition, the photoluminescence (PL) integral and peak intensities of the blue light epi-layer were enhanced by more than 5% and 15%, respectively. It means the external quantum efficiency (EQE) of epitaxial structures is promoted. The screw dislocation density was reduced by 65% according to the X-ray diffraction (XRD) spectra.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3