Abstract
In spatial science, the relationship between spatial objects is considered to be a vital element. Currently, 3D objects are often used for visual aids, improving human insight, spatial observations, and spatial planning. This scenario involves 3D geometrical data handling without the need for topological information. Nevertheless, in the near future, users will shift to more complex queries corresponding to the existing 2D spatial approaches. Therefore, having 3D spatial objects without having these relationships or topology is impractical for 3D spatial analysis queries. In this paper, we present a new method for creating topological information that we call the Compact Abstract Cell Complexes (CACC) data structure for 3D spatial objects. The idea is to express in the most compact way the topology of a model in 3D (or more generally in nD) without requiring the topological space to be discrete or geometric. This is achieved by storing all the atomic cycles through the models (null combinatorial homotopy classes). The main idea here is to store the atomic paths through the models as an ant experiences topology: each time the ant perceives a previous trace of pheromone, it knows it has completed a cycle. The main advantage of this combinatorial topological data structure over abstract simplicial complexes is that the storage size of the abstract cell cycles required to represent the geometric topology of a model is far lower than that for any of the existing topological data structures (including abstract simplicial cell cycles) required to represent the geometric decomposition of the same model into abstract simplicial cells. We provide a thorough comparative analysis of the storage sizes for the different topological data structures to sustain this.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. 3D Topology Rules Implementation in Spatial Database;Lecture Notes in Geoinformation and Cartography;2024
2. 3D Spatial Queries for High-Rise Buildings Using 3D Topology Rules;Lecture Notes in Networks and Systems;2024
3. TOPOLOGY MODELS AND RULES: A 3D SPATIAL DATABASE APPROACH;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-13
4. Investigating the influence of 3D building models on pedestrian wind comfort through wind computational fluid dynamics analysis;IOP Conference Series: Earth and Environmental Science;2023-12-01
5. Current uses of topology in 3D GIS: An overview;IOP Conference Series: Earth and Environmental Science;2023-12-01