A Real-Time and Open Geographic Information System and Its Application for Smart Rivers: A Case Study of the Yangtze River

Author:

Chen Zeqiang,Chen NengchengORCID

Abstract

The timely sharing and interoperation of multi-source cross-sectoral information is an important issue for a Geographic Information System (GIS). To study this issue, a real-time and open GIS model called GeoSensor is proposed in this work. GeoSensor integrates the real-time GIS model, real-time computation framework, and Open Geospatial Consortium services. This paper illustrates the system architecture and the implementation methods of the GeoSensor. One of the methods developed is the conceptual mapping of a real-time GIS data model to open GIS models and services and a real-time computation framework. The other method developed is the integration of open GIS services, a real-time computation framework, and hybrid databases. The GeoSensor was tested in a case study of building a smart river. In the case study, a comprehensive sensor web was constructed and integrated with the real-time information on rainfall, beacon, channel, sediment, and water levels derived from space-based sensors, air-borne sensors, and underground sensors from multiple sectors in the Yangtze River basin. The GeoSensor manages the comprehensive sensor web with 32 types of sensors and more than 10 billion observation records. Three application systems were developed based on the GeoSensor to manage flood control, hydropower production, and navigation of the Yangtze River. The results of the three application systems show that the real-time and open system improves the management efficiency of the Yangtze River. This system is promising for managing smart rivers.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3