In-Stream Variability of Litter Breakdown and Consequences on Environmental Monitoring

Author:

Omoniyi Gbenga EmmanuelORCID,Bergerot BenjaminORCID,Pellan Laura,Delmotte Maëva,Crave Alain,Heyman Joris,Piscart ChristopheORCID

Abstract

Energy derived from leaf litter decomposition fuels food webs in forested streams. However, the natural spatial variability of the decomposition rate of leaf litter and the relative contributions of its drivers are poorly known at the local scale. This study aims to determine the natural in-stream variability of leaf litter decomposition rates in successive riffles and to quantify the factors involved in this key ecosystem process at the local scale. Experiments were conducted on six successive riffles in nine streams in north-western France to monitor the decomposition rate in fine (microbial decomposition, kf) and coarse (total decomposition, kc) mesh bags. We recorded 30 ± 2% (mean ± S.E.) variation in kc among riffles and 43 ± 4% among streams. kf variability was 15 ± 1% among riffles and 20 ± 3% among streams. However, in-stream variability was higher than between-stream variability in four of the nine streams. Streambed roughness was negatively related to decomposition and was the most important factor for both total and microbial decomposition. Our study shows that the natural variability of the decomposition rate resulting from the local morphological conditions of habitats could be very important and should be taken into consideration in studies using leaf litter assays as a bio-indicator of anthropogenic impacts in streams.

Funder

Conseil Régional de Bretagne

Tertiary Education Trust Fund

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3