Fatigue Performance of Type I and Type II Fibre Bragg Gratings Fabricated by Femtosecond Laser Inscription through the Coating

Author:

Zhang Naizhong,Turk SuzanaORCID,Davis Claire,Chiu Wing K.ORCID,Boilard TommyORCID,Bernier Martin

Abstract

Strain sensing technology using fibre Bragg grating (FBG) sensors is an attractive capability for aerospace structural health monitoring (SHM) and assessment because they offer resistance to harsh environments, low maintenance, and potential for high density and high strain sensing. The development of FBG inscription techniques through the fibre polymer coating using infrared (IR) lasers has overcome the mechanical weaknesses introduced by removal of the fibre coating, which is typically required for conventional UV laser inscription of FBGs. Type I and Type II femtosecond gratings are fabricated using through-coating inscription techniques, but the higher laser energy used for Type II gratings damages the glass fibre core, impacting mechanical performance. This paper investigates the fatigue performance of Type I and Type II through-coating FBG sensors with different fibre geometries and photosensitisation approaches to evaluate their overall reliability and durability, with a view to assess their performance for potential use in civil and defence SHM applications. The fatigue performance of FBG sensors was assessed under high-strain and high-frequency mechanical loading conditions by using a custom-designed electro-dynamically actuated loading assembly. In addition, pre- and post-fatigue microscopic analyses and high-resolution reflection spectrum characterisation were conducted to investigate the failure regions of the fibres and the effect of fatigue loading on reflection spectrum features. As expected, Type I gratings had a significantly higher fatigue life compared to Type II gratings. However, Type II gratings performed significantly better than conventional UV laser-inscribed FBGs and electrical foil strain gauges. Type II gratings withstand higher temperatures, and are therefore more suitable for application in harsh environments.

Funder

US Office of Naval Research under a NICOP

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An adaptive post-processing algorithm for strain reading abnormalities of FBG in cryogenic test;Measurement;2024-03

2. Experimental Analysis of Fatigue Influence on Diaphragm-Embedded Fiber Bragg Grating Sensors;IEEE Sensors Journal;2023-12-15

3. Experimental analysis of FBG sensors thermal calibration under different loading conditions;2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace);2023-06-19

4. Fiber-Optic Temperature Sensor Based on a Phase Shift;2023 Systems of Signals Generating and Processing in the Field of on Board Communications;2023-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3