Abstract
Groundwater is crucial for economic and agricultural development, particularly in arid areas where surface water resources are extremely scarce. The prediction of groundwater levels is essential for understanding groundwater dynamics and providing scientific guidance for the rational utilization of groundwater resources. A back propagation (BP) neural network based on the artificial bee colony (ABC) optimization algorithm was established in this study to accurately predict groundwater levels in the overexploited arid areas of Northwest China. Recharge, exploitation, rainfall, and evaporation were used as input factors, whereas groundwater level was used as the output factor. Results showed that the fitting accuracy, convergence rate, and stabilization of the ABC-BP model are better than those of the particle swarm optimization (PSO-BP), genetic algorithm (GA-BP), and BP models, thereby proving that the ABC-BP model can be a new method for predicting groundwater levels. The ABC-BP model with double hidden layers and a topology structure of 4-7-3-1, which overcame the overfitting problem, was developed to predict groundwater levels in Yaoba Oasis from 2019 to 2030. The prediction results of different mining regimes showed that the groundwater level in the study area will gradually decrease as exploitation quantity increases and then undergo a decline stage given the existing mining condition of 40 million m3/year. According to the simulation results under different scenarios, the most appropriate amount of groundwater exploitation should be maintained at 31 million m3/year to promote the sustainable development of groundwater resources in Yaoba Oasis.
Funder
National Natural Science Foundation of China
Fundamental Research Foundation of the Central Universities
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献