Suitable Site Selection for Rainwater Harvesting and Storage Case Study Using Dohuk Governorate

Author:

Ibrahim Gaylan Rasul FaqeORCID,Rasul AzadORCID,Ali Hamid Arieann,Ali Zana FattahORCID,Dewana Amanj Ahmad

Abstract

The Middle East is an inherently dry zone. It has experienced severe drought for the last seven years, and climate change has made the situation worse. The Dohuk governorate has been suffering from an appalling water crisis. One possible way of relieving this water crisis is by properly harvesting the rainwater. Rainwater harvesting is a widely used method of storing rainwater in the countries presenting with drought characteristics. Several pieces of research have derived and developed different criteria and techniques to select suitable sites for harvesting rainwater. The main aim of this research was to identify and select suitable sites for the potential erection of dams, as well as to derive a model builder in ArcMap 10.4.1. The model combined several parameters, such as slope, runoff potential, land cover/use, stream order, soil quality, and hydrology to determine the suitability of the site for harvesting rainwater. To compute the land use/cover categories, the study depended on Landsat image data from 2018. Supervised classification was applied using the ENVI 5 software, while the slope mapping and drainage order were extracted using a digital elevation model. Inverse distance weighting (IDW) was used for the spatial interpolation of the rain data. The results demonstrated that suitable areas for water harvesting, are located in the middle and northern part of the research area, and in intensively cultivated zones. The main soil texture in these suitable sites was loam, while the rainfall rate amounted to 750 to 900 mm. This research shows that 15% and 13% of the area studied can be categorized as having excellent and good suitability for water harvesting, respectively. Furthermore, 21% and 27% of the area studied were of moderate and poor suitability, while the remaining 24% were not suitable at all.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3