Kinematics and Dynamics of Turbulent Bands at Low Reynolds Numbers in Channel Flow

Author:

Xiao Xiangkai,Song BaofangORCID

Abstract

Channel flow turbulence exhibits interesting spatiotemporal complexities at transitional Reynolds numbers. In this paper, we investigated some aspects of the kinematics and dynamics of fully localized turbulent bands in large flow domains. We discussed the recent advancement in the understanding of the wave-generation at the downstream end of fully localized bands. Based on the discussion, we proposed a possible mechanism for the tilt direction selection. We measured the propagation speed of the downstream end and the advection speed of the low-speed streaks in the bulk of turbulent bands at various Reynolds numbers. Instead of measuring the tilt angle by treating an entire band as a tilted object as in prior studies, we proposed that, from the point of view of the formation and growth of turbulent bands, the tilt angle should be determined by the relative speed between the downstream end and the streaks in the bulk. We obtained a good agreement between our calculation of the tilt angle and the reported results in the literature at relatively low Reynolds numbers.

Funder

National Natural Science Foundation of China

Tianjin University

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference34 articles.

1. DNS of Heat Transfer in a Transitional Channel Flow Accompanied by a Turbulent Puff-like Structure;Tsukahara;arXiv,2014

2. An experimental study on turbulent-stripe structure in transitional channel flow;Tsukahara;arXiv,2014

3. Turbulent-laminar patterns in plane Poiseuille flow

4. Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3