Boreal Forest Multifunctionality Is Promoted by Low Soil Organic Matter Content and High Regional Bacterial Biodiversity in Northeastern Canada

Author:

Giguère-Tremblay RoxanneORCID,Laperriere Genevieve,de Grandpré Arthur,Morneault Amélie,Bisson Danny,Chagnon Pierre-Luc,Germain Hugo,Maire VincentORCID

Abstract

Boreal forests provide important ecosystem services, most notably being the mitigation of increasing atmospheric CO2 emissions. Microbial biodiversity, particularly the local diversity of fungi, has been shown to promote multiple functions of the boreal forests of Northeastern China. However, this microbial biodiversity-multifunctionality relationship has yet to be explored in Northeastern Canada, where historical environment have shaped a different regional pool of microbial diversity. This study focuses on the relationship between the soil microbiome and ecosystem multifunctionality, as well as the influence of pH and redox potential (Eh) on the regulation of such relationship. Structural equation modelling (SEM) was used to explore the different causal relationships existing in the studied ecosystems. In a managed part of the Canadian boreal forest, 156 forest polygons were sampled to (1) estimate the α- and β-diversity of fungal and bacterial communities and (2) measure 12 ecosystem functions mainly related to soil nutrient storage and cycling. Both bacteria and fungi influenced ecosystem multifunctionality, but on their own respective functions. Bacterial β-diversity was the most important factor increasing primary productivity and soil microbial biomass, while reducing soil emitted atmospheric CO2. Environmental characteristics, particularly low levels of organic matter in soil, were shown to have the strongest positive impact on boreal ecosystem multifunctionality. Overall, our results were consistent with those obtained in Northeastern China; however, some differences need to be further explored especially considering the history of forest management in Northeastern Canada.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3