Carbon and Nutrient Inputs by Litterfall in Evergreen and Deciduous Forests in Korea

Author:

Park Byung Bae,Rahman Afroja,Han Si HoORCID,Youn Woo BinORCID,Hyun Hwa Ja,Hernandez Jonathan,An Ji YoungORCID

Abstract

Knowledge about carbon and nutrient fluxes by litterfall is important for understanding nutrient cycling in geologically unique ecosystems. However, the determination of forest litterfall production patterns is difficult due to many biophysical factors influencing the process. In this study, we (1) quantified the litterfall production and carbon and nutrient fluxes in warm-temperate evergreen forest stands in Jeju Gotjawal and (2) compared these values to those of a typical cool-temperate deciduous forest stand by forest types and climate differences. Litterfall from evergreen broadleaved forests at Cheongsu (CS) and Seonheul (SHb), a mixed forest at Seonheul (SHm) in Jeju Gotjawal, and a deciduous broadleaved forest at Chungnam National University Forest (CNU) was collected for a full two years using litter traps. Samples were sorted into leaves, twigs, barks, seeds, and unidentified materials, and then weighed and measured for C, N, P, K, Ca, and Mg fluxes by litterfall. Results showed that the mean annual litterfall (846.3 g m−2, average of CS, SHb, and SHm) at Jeju Gotjawal was similar to that of CNU (885.5 g m−2), but varied by site in Jeju Gotjawal: CS (933.1 g m−2) was significantly higher than the average of SHb and SHm (802.9 g m−2). Seasonal patterns of litterfall production differed by forest types; evergreen broadleaved forests showed a bimodal peak in fall and spring while deciduous broadleaved forests showed a unimodal peak in fall. Jeju Gotjawal had significantly higher total macronutrient concentrations and contents (except for K) than CNU and they also varied by site in Jeju Gotjawal: CS had higher N, P, Ca, and Mg contents than SHb and SHm. We conclude that litterfall production and nutrient fluxes differed by forest stand as influenced by forest types and climate. Further, our findings are important for understanding carbon and nutrient dynamics in the geologically unique ecosystem of Jeju Gotjawal and other areas with similar characteristics.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3