Regional-Scale Distribution of Helium Isotopes in Aquifers: How Informative Are They as Groundwater Tracers and Chronometers?

Author:

Pinti Daniele LuigiORCID,Larocque MarieORCID,Méjean Pauline,Saby Marion,Hernández-Hernández Mario Alberto,Gagné SylvainORCID,Roulleau EmilieORCID,Sano Yuji,Castro Maria Clara,Matsumoto Takuya,Horoi Viorel

Abstract

This study presents an almost entirely unpublished dataset of 121 samples of groundwater analyzed for helium concentration and its isotopic ratio (3He/4He) in two adjacent watersheds of the St. Lawrence Lowlands, in a region with intensive agricultural activities in the southern Québec Province, Eastern Canada. Most of the samples were collected in the regional bedrock fractured aquifer hosted in mid-Ordovician siliciclastic shales, on a total surface of 7500 km2. Even with this low-density sampling, and in a heterogeneous and fractured aquifer, the helium isotopes bring precious information on the recharge conditions and on chemical evolution of water. The helium spatial interpolation does not show a clear isotopic gradient through the basin. However, it shows progressive enrichment of radiogenic 4He in the confined part of the aquifer. The atmospheric and/or tritiogenic-rich helium occurs at the recharge in the Appalachians and in the middle of the plain, where impermeable cover is limited, and local infiltration of meteoric freshwater reaches the bedrock aquifer. The relation between the total dissolved solids (TDS) and 3He/4He ratios remains elusive. However, on discriminating the samples with the dominant chemistry of water, a clear trend is observed with 3He/4He ratio, suggesting that radiogenic 4He accumulates together with dissolved solids and with increasing time (indicated by progressively older 14C ages). Finally, the noble gas temperatures (NGTs) obtained from concentrations of the other noble gases (Ne, Ar, Kr and Xe) brings constraints on the earlier recharge conditions during the Holocene. Particularly, the NGTs showed that the studied aquifers were continuously replenished, even under ice-sheet cover in the last 10,000 years.

Funder

Fonds de Recherche du Québec - Nature et Technologies

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3