Corrosion at the Steel–Medium Interface

Author:

Melchers Robert E.1ORCID

Affiliation:

1. Centre for Infrastructure Performance and Reliability, The University of Newcastle, Callaghan, NSW 2308, Australia

Abstract

Corrosion on the interface between a metal alloy, such as steel, and a wet, permeable non-metallic medium is of considerable practical interest. Examples include the interface between steel and water, the atmosphere or concrete, as for steel reinforcement bars; between metal and soil, as for buried cast iron or steel pipes; deposits of some type, as in under-deposit corrosion; and the interface with insulation, protective coatings, or macro- or micro-biological agents. In all cases, corrosion initiation depends on the characteristics of the interfacial zone, both of the metal and the medium, and the spatial variability. For (near-)homogeneous semi-infinite media with good interfacial contact, the pitting, crevices and general corrosion of the metal will be largely controlled by the metal (micro-)characteristics, including its inclusions, imperfections and surface roughness. In other cases, these may be overshadowed by the macro-characteristics of the medium and the degree of interfacial contact, possibly with severe resulting corrosion. Where the build-up of corrosion products can occur at the interface, they will dominate longer-term corrosion and govern the long-term corrosion rate. For media of finite thickness, diffusion issues and material deterioration may also be involved. The practical implications are outlined. It is argued that with the presence of a suitable medium, it is possible to achieve negligible long-term corrosion but only if certain practical actions are taken.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

General Medicine

Reference76 articles.

1. Critical questions and answers about cathodic protection;Ackland;Corros. Eng. Sci. Technol.,2019

2. Coogan, C. (2022). Marine Corrosion and Cathodic Protection, CRC Press.

3. Jones, D.A. (1996). Principles and Prevention of Corrosion, Prentice Hall. [2nd ed.].

4. Garrels, R.M., and Christ, C.L. (1965). Solutions, Minerals and Equilibria, Harper & Row.

5. Pourbaix, M. (1974). Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE Int.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3