Research on Dynamic Economic Dispatch Optimization Problem Based on Improved Grey Wolf Algorithm

Author:

Yang Wenqiang1,Zhang Yihang1,Zhu Xinxin1,Li Kunyan1,Yang Zhile2

Affiliation:

1. School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China

2. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract

The dynamic economic dispatch (DED) problem is a typical complex constrained optimization problem with non-smooth, nonlinear, and nonconvex characteristics, especially considering practical situations such as valve point effects and transmission losses, and its objective is to minimize the total fuel costs and total carbon emissions of generating units during the dispatch cycle while satisfying a series of equality and inequality constraints. For the challenging DED problem, a model of a dynamic economic dispatch problem considering fuel costs is first established, and then an improved grey wolf optimization algorithm (IGWO) is proposed, in which the exploitation and exploration capability of the original grey wolf optimization algorithm (GWO) is enhanced by initializing the population with a chaotic algorithm and introducing a nonlinear convergence factor to improve weights. Furthermore, a simple and effective constraint-handling method is proposed for the infeasible solutions. The performance of the IGWO is tested with eight benchmark functions selected and compared with other commonly used algorithms. Finally, the IGWO is utilized for three different scales of DED cases, and compared with existing methods in the literature. The results show that the proposed IGWO has a faster convergence rate and better global optimization capabilities, and effectively reduces the fuel costs of the units, thus proving the effectiveness of IGWO.

Funder

National Natural Science Foundation of China

The Youth Innovation Promotion Association CAS

Shenzhen Excellent Innovative Talents

Scientific and Technological Project of Henan Province

Higher Learning Key Development Project of Henan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing ELD in power systems applying GWO: A Practical Approach;Journal of Soft Computing Paradigm;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3