Optimal Operation of Residential Battery Energy Storage Systems under COVID-19 Load Changes

Author:

Hijazi Zahraa12ORCID,Hong Junho2ORCID

Affiliation:

1. DTE Electric, Detroit, MI 48226, USA

2. Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA

Abstract

Over the past few years as COVID-19 was declared a worldwide pandemic that resulted in load changes and an increase in residential loads, utilities have faced increasing challenges in maintaining load balance. Because out-of-home activities were limited, daily residential electricity consumption increased by about 12–30% with variable peak hours. In addition, battery energy storage systems (BESSs) became more affordable, and thus higher storage system adoption rates were witnessed. This variation created uncertainties for electric grid operators. The objective of this research is to study the optimal operation of residential battery storage systems to maximize utility benefits. This is accomplished by formulating an objective function to minimize distribution and generation losses, generation fuel prices, market fuel prices, generation at peak time, and battery operation cost and to maximize battery capacity. A mixed-integer linear programming (MILP) method has been developed and implemented for these purposes. A residential utility circuit has been selected for a case study. The circuit includes 315 buses and 100 battery energy storage systems without the connection of other distributed energy resources (DERs), e.g., photovoltaic and wind. Assuming that the batteries are charging overnight, the results show that energy costs can be reduced by 10% and losses can decrease by 17% by optimally operating batteries to support increased load demand.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3