Energy Consumption and Battery Size of Battery Trolley Electric Trucks in Surface Mines

Author:

Bao Haiming1ORCID,Knights Peter1ORCID,Kizil Mehmet1ORCID,Nehring Micah1ORCID

Affiliation:

1. School of Mechanical and Mining Engineering, The University of Queensland, Brisbane 4072, Australia

Abstract

Mining production, being one of the most energy-intensive industries globally, consumes substantial amounts of fossil fuels and contributes to extensive carbon emissions worldwide. The trend toward electrification and advanced developments in battery technology have shifted attention from diesel power to battery alternatives. These alternatives are appealing, as they contribute to decarbonisation efforts when compared to conventional diesel trucks. This paper presents a comprehensive review of recent technological advancements in powertrains for Mining Haulage Truck (MHT). It also compares these configurations based on mining system-level considerations to assess their future potential. The evaluated configurations include Diesel-Electric Truck (DET), Trolley Assist Truck (TAT), Battery-only Truck (BOT), Battery Trolley with Dynamic charging truck (BT-D), and Battery Trolley with Stationary charging truck (BT-S). According to the analysis, the energy demand for on-board diesel or battery power (excluding trolley power) in these alternative options is as follows: DET—681 kWh, BOT—645 kWh, TAT—511 kWh, BT-S—471 kWh, and BT-D—466 kWh. The paper also illustrates the theory of battery size design based on the current battery technology, battery material selection, battery package design, and battery size selection methods. In the case of tailored battery size selection, BOT, BT-D, and BT-S configurations require LiFePO4 (LFP) battery masses of 25 tonnes, 18 tonnes, and 18 tonnes, respectively. Based on a techno-economic assessment of battery MHT alternatives with a future perspective, it has been determined that BT-D requires the lowest amount of on-board battery energy. Furthermore, over a span of 20 years, BT-S has demonstrated the lowest on-board battery cost.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3